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A powerful finite element method for numerical sotution of
hydrodynamic conservation equations of electrons and ions, including
drift, diffusion, and source terms, is proposed and applied in the area of
electrical gas discharges dominated by space charge effects and having
steep variation of charge carrier densities. This numerical method,
having a quite good conscrvative property and valid also for non-
uniform mesh case, is able 1o take properly into account the possible
discontinuities in space and/or time variation of electron and ion
densities. Comparisens with an implicit finite difference scheme are first
undertaken in the case of a standard problem of propagation of
rectangular and Gaussian initial waves without source term and with or
without diffusion. Then, in the case of real discharges between two
plane parallel electrodes, hydrodynamic equations for charge carrier
conservation coupled to Peisson equation have been solved. This has
been undertaken to show the ability of the present numerical method to
treat the classical discharges dominated by space charge effects such as
the cathodic region of usual glow discharge in Ar and the propagation
of ionizing waves in high pressure N, discharge under overvoltage
stress.  © 1994 Academic Press, Inc.

1. INTRODUCTION

In this paper, a finite element method has been applicd to
the numerical solution of hydrodynamic conservation equa-
tions for charge carriers {electrons and ions) evolving in
non-thermal cold plasmas created by electrical gas dis-
charges. As is known, these plasmas are characterized by a
relatively low ionization degree (n,/N<10"% #, and N
being electron and background gas densities) and an
clectron temperature generally much higher than the tem-
perature of neutral gas which remains practically at the
ambicnt temperature during discharge evolution. In [act,
the present numerical method concerns, more particularly,
gas discharges in which space charge effects can lead to a
strongly non-uniform electric field and very steep density
gradients, such as the cathode region of usual glow dis-
charges or plasma generated by ionizing waves under
overvoltage stress as in corona discharges.

In these gas discharge areas, the most used numerical
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algorithms, in the literature, in approximately the last three
decades, can be roughly divided into three classes: the
hybrid method of characteristics, the FCT (flux corrected
transport) algorithms, and the implicit finite diflerence
scheme.

In the framework of this paper, there are no detailed
descriptions of, or exhaustive references to, these different
numerical algorithms already successfully applied—with
their advantages and disadvantages—for the solution of
continuity equations for the study of space charge
dominated transport in gases. However, the interested
reader can refer, for example, to Davies et al [1] con-
cerning the hybrid method of characteristics developed
mainly to trace the space and time ionization growth under
important space charge effects. This method, where
continuity equations for electrons and ions are integrated
along the characteristic curves, has real advantages (easily
understandable physically and second-order accuracy) and
has been then used by several authors [2]. However, due to,
in particular, its iterative nature which involves rather long
computational times, this method has been progressively
replaced by alternative method beginning around 1980.
Among the numerous finite difference schemes which have
been successfully used in the literature in the field of gas dis-
charges (as, e.g., the explicit relaxation method of Lowke
and Davies [3]), the flux corrected transport (FCT)
scheme is today probably the one most used, This FCT
numerical scheme, which is analyzed by Morrow [4] and
compared to Euler, Runge-Kutta, Lax-Wendroff schemes,
and also 1o the characieristic method, has been developed,
first, in the area of fluid dynamics by Boris and Book [5]
and Zalesak-[67 for the propagation of steep shock waves.
FCT schemes, under different forms (non-uniform meshes,
implicit formulation, in 1D and 2D geometry, etc.) have
been used then for the numerical computation of electrical
breakdown in non-uniform fields by several authors [7].
However, even though the Courant-Friedrichs—Lewy
condition (concerning time step A¢ and grid space 4z for
particle velocity W) is restricted [4] to At < Az/2W instead
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of At < Az/W for the usual explicit finite difference scheme,
FCT algorithms, particularly in the case of 2D geometry,
are not powerful enough to be really attractive from a com-
putational time point of view. Then, another finite difference
method (implicit scheme with exponential solution),
initially developed in semi-conductor device simulation
[81, has been adapted to charged particle transport in the
case of de and rf glow discharges by Boeuf [97] for 1D and
also 2D geometry. This scheme is, in principle, not subject
to a severe limitation for choice of 4t time step (due to its
implicit formulation) and is able to treat (due to its
exponential solution) transport of charged particles in the
cases where predominate drift term as weil as diffusion term
and also in the case of relatively high current density (e.g.,
as in highly abnormal glow discharges). However, the
change from 1D to 2D geometry is not a straightforward
transformation.

In fact, in comparison to most of the previous numerical
schemes, finite element method (proposed in this paper for
solution of continuity equations of clectrons and ions)
presents a major drawback linked to its programming com-
plexity especially in the case, where the solution has discon-
tinuity along the z and/or time axis. However, despite this
difficulty, finite element methods can be considered attrac-
tive enough, from the authors’ point of view, regarding its
numerous advantages: boundaries are correctly treated,
only density values are needed as boundary conditions and
not their space derivatives, solution remains positive
without specifying any numerical constraint, choices of A¢
time step and Az space grid are less restrictive, numerical
scheme is straightforwardly transformed from 1D to 2D or
3D geometry, and discontinuity on solution can be properly
taken into account.

Furthermore, as is known, finite element schemes have
already been successfully applied for a long time to several
areas such as, for example, Boltzmann equation for elec-
trons in weakly ionized gases [ 107, or Boltzmann equation
for neutron tranport theory [117], or fluid equations in
semi-conductor device simulation [12], etc. In the latter
area, Barnes and Lomax [12] have already shown the
ability of finite element methods to solve continuity equa-
tions for electrons and holes coupled to Poisson equation
which are quite similar to equations of ¢lectrons and ions in
gases. Therefore, these similitudes to semiconductor area
and aiso to neutron transport [11] and electron transport
[10] areas, have been used in this paper as a source of
suggestions to apply a specific finite element methed for
solution of charge carrier conservation equations in gas dis-
charge field. In that field, in the authors’ knowledge, such a
numerical scheme has not yet been adapted in the literature
since usual schemes, as outlined previously, are based rather
on finite difference algorithms.

So, in the framework of this paper, a specific finite
element scheme is described in the case of typical time
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dependent and non-linear hydrodynamic equation for
charge carriers including convective, diffusion and source
terms for 1D Cartesian geometry. This coordinate frame is
chosen in order to illustrate the numerical scheme (see
Section 2). This rather complex method, already used in the
neutron transport area [ 137 and also for electron transport
in weakly ionized gases [10], i1s a discontinuous finite
¢lement method where an a priori continuity between two
consecutive grids is not assumed. However, 1t can easily be
reduced to a simpler scheme (continuous finite element
method) when there is no discontinuity in the density varia-
tion. In Section 3, some resuits are first given in model gas
discharge (i.e., without source term and with or without
diffusion term) in order to check the validity and the power-
fulness of this numerical scheme, for instance, in the case of
the propagation of test functions such as rectangular or
Gaussian waves, Comparisons are also undertaken with an
implicit finite difference scheme. Then, some results are
given in the case of real discharges corresponding to
cathodic region of Ar glow discharge and also for propaga-
tion of ionizing wave in high pressure N, discharges under
overvoltages stress. The aim is to show the ability of the
finite element method to correctly describe the main features
of charge carrier transport in these discharges dominated by
highly non-uniform electric fields due to space charge effects
which are taken into account, as usual, by coupling Poisson
equation to hydrodynamic conservation equation of elec-
trons and ions.

2. NUMERICAL METHODS OF CALCULATION

2.1. Hydrodynamic Equations for Charge Carriers

The space and time evolution of hydrodynamic equations
for charge carriers (or continuity equations) can be written
in the case of 1D Cartesian gcometry as

dp°  gj°
A 3 R 1
o R A URN (1a)
fp™ of . .
FTRRA S (1b)
dp O
6! + 62 =P Va, (IC)

where p°, p*, and p~ are electron, positive ion, and
negative ion charge densities; j, j }, j . are their respective
current densities along the z axis. Axial j, component of
current densities for any charged particles (electron,
positive ion, or negative ion) has the foliowing form:

ép

. =pW,—D_—.
J:=pW, %z

(2}
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In Eq. (1), »; and v, represent ionization and attachment
frequencies due to electron-molecule impact (for the sake
of simplicity, ions are assumed to be produced only by elec-
tron—-molecule collision}, While in Eq. (2), W, can be the
axial electron, positive ion, or negative ion drift velocities
(W3, W1, or W2 due to electrid field action on charge
carriers and 0., the axial diffusion coefficients of the corre-
sponding particles (D%, D}, or D). In fact, ion diffusion
coefficients are often neglected in the literature in Eq. (2).
Such an approximation, which can be correct on a short
time scale, becomes more questionable on a longer time
scale where ion drift and diffusion have a more significant
influence.

Furthermore, due to the important space charge effect in
the discharge of our interest, Eqs. (1) and (2} are strongly
coupled to Poisson equation for potential V' (or for axial
electric field E£.) which, in 1D Cartesian geometry, has the
form

dE, t

T + € - 3
2 a2 EO(p +p5+p7), (3)

where g, denotes the dielectric constant.

2.2. Numerical Schemes

The general form of conservation equations of charged
particles to be solved is obtained by substituting Eq. (2) in
Eq. (1),

dnlz, t) ki
dt Oz oz
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0z
(4)

with known initial (#(z, 1 =0)) and boundary (n(z = z;,, )
or n(z=1z,,,, t)) conditions.

In Eq. (4), n(z, ¢) can be electron, positive ion, or negative
ion density, and S(z, 1), W.{z, ¢t), and D,(z, t} are source
term, drift velocity, and diffusion coefficient of the corre-
sponding particles. In fact, Eq. (4) is generally solved using
the local electric field approximation in which the macro-
scopic coefficients (V,, D, v;, and v,) depend on space and
time via the electric field E,(z, t) such as, for example,
W_(E.(z, 1)), D(E.(z, 1)). In the framework of this paper,
the well-known non-equilibrium effects (see, e.g., [14]), not
taken into account by local electric field approximation, are
not discussed. However, it must be noted that Egs. (4),
coupled to Poisson equation (3) and using local electric
field approximation (i.e., fluid model), are, in principle, not
sufficient to give realistic gas discharge parameters (electron
and ion densities, -sheath thickness, ...) in the case of, for
example, abnormal glow discharge. Indecd, in that case,
local field approximation is no more valid since ionization
processes are overestimated in the sheath (cathode region)

YOUSFI, POINSIGNON, AND HAMANI

and underestimated in the negative glow (see, e.g., [9, 14]).
In order to obtain more realistic discharge parameters, it is
necessary to avoid local field approximation by coupling to
a fluid model, for instance, the Bolizmann equation or
Monte Carlo simulation, which are able to take into
account correctly the non-equilibrium effects on transport
coefficients. But, in any case, numerical solution of
hydrodynamic equations (4) are still necessary, and an
optimum numerical scheme reducing, for example, time
computing or numericai diffusion, is always suitable. This is
one of the reasons for which the following numerical scheme
is described hereafter.

It has been previously noted that Eq.(4) (which is a
highly non-linear second-order partial differential equation
and strongly coupled to Poisson equation (3)) can be
numerically solved using a classical finite difference scheme
based on discretization of the different differential operators
d/dr and 6/0z. Such a direct method, called strong formula-
tion, necessitates, in principle, further conditions on space
and time derivatives of density n(z, 7). Such conditions are
not ailways known and not so easy—in certain cases—to
introduce in the numerical scheme. Another way to solve
Eq. (4) is to use a less restrictive formulation (weak for-
mulation) which is less demanding concerning conditions
on time and space derivatives of density. The weak formula-
tion consists of replacing, as in weighted residual method,
Eq. (4) by an integral equation:

on(z,t) dnW,z,t)y @ il
'[dzJ.dtr,é( T —E[D;{z,t)an(z,t)])

=jdzfdz 45z, 0), (5

where ¢ is a known test function. The meaning of this test
function ¢ can be found in the abundant literature devoted
to finite element methods for partial differential equations
(see, e.g., Zienkiewicz [ 157). However, it is to be noted that
if n(z, 1) satisfies Eq. (5) whatever the test function ¢, then
Eqgs. (4) and (5) are identical or, in other words, Egs. (4)
and (5) have the same solution. But, if n(z, ¢t) satisfies
Eq. (5) for a large enough set of independent test functions,
then a(z, £) can be considered as an approximate solution of
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FIG. 1. Finite element [2"’2'”2'])( [tes tv1 ]
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Eq. {(4) with an acceptable depree of confidence. This is why
the weak formulation (ie., integral equation (5)) can be
chosen for the numerical solution of hydrodynamic equa-
tions of charge carriers.

To do that, it is necessary first to define the limits of
space z and time s domains and to discretize the corre-
sponding domains respectively in nz and st intervals,

= {Zmirn Zmax}

= {zozzmins 21 22! ey Z,-, Z£+ls rery znz=zmax}s
= {Imin’ tmax}
= {10__‘ lmina 119 121 =ty lfrs 1k+1; rery zmzrmax}’

where 4z, (=z,,,—2z,), the space step, and 4dt, . ,,
(=14, 1— 1), the time step, are not necessarily regular. In
this paper, each finite element [z;, z,, ;] % [f4, tx, (] is
chosen as a rectangular grid (see Fig. 1).

Then in c¢ach finite element, Eq. (4} is muitiplied by the
known test function ¢ and integrated over dz and dr. As,
n(z, t) is assumed to be a linear function of variables z and ¢
inside each finite element, ie.,

niz, ty=az+ bt +c¢, (6)
test functions ¢ are chosen, as in Chauvet’s work [13],
linear in [z, t] space:
¢,=z't"  with [=0orlandm=0o0r I (see Table 1).

Furthermore, it is important to note that the direction of
integration (i.e., for a given time step 4t, . 5, the displace-
ment along the z axis from a finite element to the adjoining
one) corresponds to the real direction of particle displace-
ment in the gas discharge (ie., from cathode to anode for
electrons and negative ions and from anode to cathode for
positive ions), while the direction of integration along the
time axis is always along the direction of time evolution. For
these reasons, Chauvet [13] has defined (as in an upwind
differencing method) the “lighted sides” (or the upstream
sides) of each finite element [z,,z,, 3% [t4, fx ) which
are the sides of entrance in the grid (i.e., sides 48 and BC
shown in Fig. 1 in the case of negative particles and

TABLEI

Definition of Test Functions ¢/ for the Different Valtues of fand m

i ! m )
1 0 [} 1
2 1 0 z
3 0 1 !
4 1 1 2t
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sides CD and BC for positive ions). So, in the case where
n{z, t) has discontinuities along the z and/or 1 axis, the dis-
continuity notion must intervene in the definition of n(z, 1)
itself, which 1s not the same inside the elementary grid and
in the lighted sides; this yields

H(Z, t) = nin(z’ 't) + 6r',k{noul(zs I) - nin(zs t)}’ (7)
where n,,,(z, ) and n,,(z, t) are, respectively, the density
outside and inside the elementary grid [z, z;,,]x
{testis1): 0,,=1 in the lighted sides and 6,,=0 else-
where. As the density n;,{(z, ) is assumed varying linearly
inside the elementary grid, then n,,(z, t) can be expressed as

‘a function of densities of each grid corner (A4, B, C, or D)

shown in Fig. 1, following the expression deduced from
linear relation (6):

1
Azi 12 Al s 1
X {nglz;p =2 t—t )+ nplzi =20 te 1 — 1)

+nc(z—z))(ty 1 — 1) +uplz—2 )t — 1)} (8)

nin(za t):

Then, in following relation (9), time and space derivatives
of the density n(z, ¢) (dn/dt and én/dz) need to be considered
in a distribution sense; these yields

dniz, 1) _ {én(z, 1}
e i BN

dt
X [noul(zs tk) rnin(za Ik)]s (9a)
dn(z, 1)  (én,(z, 1)
3z ={ az +30z =z, 1 1)
X [MoulZis 55132 1)
—nin{Zig ey 1320 1)1 (9b)

where {0n;.(z, 1)/6t} and {én;,(z, 1)/@z} are time and space
derivatives with the classical meaning and & is the Dirac
function: s= — | in side AB, i.e., for electrons and negative
ions (particles moving forwards on the z axis); s=+1 in
side CD, ie., for positive ions (particles moving backwards
on the z axis).

From the previous definitions {9), Eq. (5), for a com-
pletely discontinuous density {i.e., along ¢ and z axis),
becomes

J«zl-n s j*fkﬂ dr 2 ({6nin(;:, I)} N {5n-m V;/;(Z, t}}

zy 13

- {§ [ L e, rl]})

_ J'““ dz '[M dt '3t — 8 ) Poun(2, 1) — Rinlz, 20))

I T
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Zit1 th+1
+s[ i dzJ‘ dt 2178(z = 2, , 130 1ya) Walz, 1)

. vn
HialZig 5+ 1y25 1))

Zi+1 T+l
—s [ [ ez =z ) Dl 1)

7 &
| _ M{ )
dz I=2ip (5412

- f“ dz frm dt z't"S(z, 1).

x

X (MoulZis s 1925 1) —

on (2, 1)
0z

T=Zir{s+1}2

(10)

Noting that description of the numerical scheme is
devoted to the discontinuous finite element method;
knowing that, in the continuous case, all terms including
discontinuity (i.e., the Dirac function) must be removed.

Equation (10) is first integrated over df and 4z inside the
elementary grid (i.e., without discontinuity terms}), by using
linear relation {6), this yields the following relation in the
case of negative particles:

1+1 i m+ 1
{Ikﬂ,'z iv12 7 Ziv12 Ty 12

Doz Dase
[W P2 it ]}
Azrfljz

T Az
+hgd —pm L0 §o LTl
k+ 172 t+1,"2 12Tk

Dokvin Doz
X[W,Hm— R :H
Azi—l,fz

s Azr+l,’2
Pt

Y ——
+nC{ k+1,’2£r+1/2+zt+l/‘2rk+l,‘2

_Dzk+l,’2
W ks — —
R Az p

+Hp { tk+l,'2cx+l/2+Z|+1/2tk+l/2

Dzw-luz
W e — —'tﬂ——]}
Zip
/ Azi+l,‘2

m I
=tk+1/22i+ljzs(zi+l/2: v 1/2)
- D A+
+z ;+1,f27k+1,fzd

”(Zf—1,lk+1)

1-vl,t’2
.'— : D PRt
- .
+ 2o ?H,'zd — n(z;_y, t)- (11)
Zi_1p2
. T y= It1 T+1
Coeflicients z;, 5, 17,12 {id1es Gl Tk+l,r'2’ and

+1 : :
Ty 1,2 are defined in the Appendix and D vz, D12 are

diffusion coeflicients at ¢, , 5, and z;and =,  ,, respectively,
and Wk« 12 drift velocity at 7,y and z,, 5.
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Then discontinuous terms of Eq. (10) are integrated over
dt and dz by using definitions shown in Fig. 2 for densities
inside and outside each elementary grid. These definitions
include the case where, for the same grid point (e.g., point B
having coordinates z,, f,), densities inside n, and outside
1. can be different due to a possible discontinuity. In fact,
for a given finite element, densities inside the grid n,,, n,4,
1., and n,; are not yet known, and densities outside the grid
(i.c., densities ng,, 1o, and n,,, By, in lighted sides BC and
AB for negative particles and densities ng,, #e,, and no_, ny,,
in lighted sides BC and CD for positive ions) are already
known because these densities are previously calculated in
the grids surrounding the working grid [z,z;,,,]1x%
[tes i - 1 ]. Obviously, for a continuous scheme, densities n
and n,, or ny and ny, or ny and ny are identical (ie.,
Ng).

So, integration over dt and dz of discontinuous terms of
Eq. (10), in the case of negative particles (sides 4B and BC),
gives

Ry=NyHg=Hg =

T+1
-y {("B:_ ng) it R —ng) Cfi :/2}

I{ D:i.r+lf2}
l
-z W::_(Jruz —
i dz;

pS {(nﬂ‘z - nB) T?-:]],Q + (nA: -

m+1

nA)tk+l/2} (12)

with dz, =z, \p—2z;_ 1.

Therefore, in each elementary grid, relations (11) and
(12) lead to a linear system of four equations and four
unknowns (i.e., densities n,, ng, n,, and n,) obtained for
the different values of / and m corresponding to the four
possible combinations (or degrees of freedom according to
the Chauvet [137] definition) as is shown in Tabie I. Such a
system of four linear equations (given in appendix for
negative and positive particles), which is solved with a
classical numerical method, gives the sought solutions »n,,
Hg, Mo, and np in each clementary grid. Obviously, in the

i [Ii+1!2 "t
Naz na | p| bz
' kil 2
i St e - —
I
T rg ! nct e
- - { - o
"Bz @ [ ‘ nr
nR{ I PG

FIG. 2. Finite element [z;,2;,1]% [f, f4+1 ] showing schematically
densities n,, ng, 1o, and ny inside the grid and densities outside the grid
for lighted side BC (n,, n.,), for lighted side AB (n ., nz,), and for lighted
side CD (n,, np,) (full arrows show the direction of entrance into the grid
in the case for electrons and negative ions and dashed arrows for positive
ons).
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e
16 17 18 18 20
k+1
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k
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FIG. 3. Direction of integration from one grid to the adjoining one
(grid number 1 to grid number 20) in the case of particles moving in
forwards direction (negative particles).

case of continuous density, this system reduces to oneg cqua-
tion {obtained for / = 0 and m = 0) with one unknown which
is either n 4 for negative particles or s for positive particles.

Then, in order to obtain solution in the whole integration
domain [z in, Zmaxd % Lmins fmax ). the successive elemen-
tary grids are treated one by one along the z axis and then
along time axis as is depicted in Fig. 3 (in the case of
negative particles), where the direction of integration
corresponds to the direction of displacement of particles in
the gap discharge (from cathode to anode for electrons and
negative ions and from anode to cathode for positive ions ).
This is why finite element method needs as boundary condi-
tions only the knowledge of density at the cathode for
negative particles and density at the anode for positive
particle; the knowledge of space derivative of density is not
required as in finite difference scheme. This is also the
reason for which the finite element scheme is relatively
stable and strictly conservative; this means, in absence of
reactive processes, density of charged particles is perfectly
conserved during the drift and diffusion of particles in a gas
discharge, as will be shown in next section.

3. RESULTS

3.1. Results in Model Discharges

The finite element scheme previously described is firstly
tested on a standard problem in which diffusion and source
terms are neglected, i.c.,

dn dn W,

— =0.
ot + oz

(13)

As in Davies’s paper [16] in which the performance of
several numerical schemes are analyzed (hybrid method of
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characteristics, FCT, monotonic upstream-centred scheme
for conservation law or MUSCL schemes, etc.), Eq. (13) is
solved under the following conditions:

— domain of z variation ts: {0, 1]

— initial density #(z, t =0) is a discontinuous function
along z axis:

n(z, t=0)=10 for 0.03<z<025
and #(z, t=0) =0 elsewhere
— drift  velocity is space dependent: W {z)=

1+9sin® nz

— boundaries are periodic in the sense that any particle
leaving the right limit (z = 1} enters at the left limit (z=0)
so that after a period T = [} dz/W.(z), solution n(z, t=T)
should be identical with initial distribution n(z, t = 0).

Figure 4a shows initial rectangular density n{z, t =0) and
ideal solutions of Eq. {13} (for t+=047 and ¢= 7T} com-
pared to densities calculated from the finite element method.
It 1s easy to observe that, except for z=0.05 and z=0.25,
where n(z, t = T') presents {in comparison) to ideal solution
a small disturbance on the top of density, the agreement
between ideal and finite element method results is
remarkably satisfying. In Fig. 4b, numerical calculations
{obtained from a classical implicit finite difference scheme
under the same conditions) show non-negligible numerical
diffusions enlarging the base of density n(z, t=T) and
reducing its top. These numerical diffusions have also the
same effect on solution #s(z, t =047T) where, in particular,
the decay of peak height is quite pronounced in comparison
with the ideal solution. Such numerical diffusions and peak
decay are practically unobserved in the case of finite element
method. From these results and also from those given by
Davies [ 16] using several numerical schemes (FCT, hybrid
method of characteristic, MUSCL) under the same condi-
tions, it is reasonable to conclude that the present finite
element method is able to treat the discontinuity problem in
the most satisfying way.

Furthermore, concerning the discontinuity problem, it is
to be noted in the cases of real gas discharges that the kind
of discontinuity shown in Figs. 4 is not very usual, except for
charge carrier densities generated by the ionizing wave in
high pressure discharge under overvoltage stress, as is
shown in the next section. However, even though densities
are very steep in these real discharges, the space density
derivative is not really infinite as in the rectangular function
test. So, for this reason and also to save computation times,
the following finite element method calculations are under-
taken without including discontinuity terms shown in
Egs. {Al) and (A2) of the Appendix, except if the density
derivative becomes infinite.

A second test function without discontinuity (an initial
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16 16
1z iz
=] =]
4 4
o ] .
0 0.z 0.4 0.6 08 1 0 0.2 0.4 0.5 o8 1
position position
F1G. 4. (a) Time evolution (=0, 04T, and T) of initial rectangular test function under influence of variable velocity (-—-): { ... ), ideal solution;
(———), finite element method solution. {(b) Time evolution {¢t =0, (.47, and T} of initial rectangular test function under influence of variable velocity:

(++-), ideal solution; ( ), implicit finite difference method solution.

Gaussian wave) is then undertaken. Figures5 show
propagation of this Gaussian wave but without neglecting
the diffusion as in Figs. 4. A constant drift velocity and diffu-
ston coefficient values are chosen: W, =10°m/s, D.=
2x 10 m?s for z varying in the range [0, 30 cm] and for
Tmax = 2% 1077 5. In Fig 5a, finite element method results
are given for a different number of discrete intervals, n_ and
n,, and Fig. 5b shows results obtained from an improved
implicit - finite difference method using an exponential
scheme [9]. As the number of discrete intervals n, and n,

0.8
>
F¥]
@

C 086
)]
o
K¢l
Y

g 0.4
h]
°
]
14

0.2

o]

o] 5 i0 15 20 25 30
z{cm)

increases, finite element method results tend towards the
optimum solution from the top and finite difference method
results tend towards the same solution from the bottom. It
is to be noted that both numerical schemes have a good
convergency because the results tend towards an optimum
solution {which is stable} as the mesh size decreases. These
schemes also have good conservative property because the
area of the initial density is well conserved during the time
evolution of #(z, ¢) in the present example chosen without a
source term. However, a smaller number of discrete inter-
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FIG. 5. (a) Time evolution (=0, 0.04, 0.08, 0.12, 0.16, and 0.2 us) of an initial Gaussian test function for W= 10°m/s and D =2 x 10’ m?%/s from

the finite element method for different values of discretization intervals n, and n,; (———), n, =100, n, = 100; (—-— -}, rn, = 100, n, = 200; (

), n, =100,

n, = 350, (Vertical dotted lines correspond to the ideal position of the top of each wave for the different instants of the propagation.) {b) Time evolution
(=0, 004, 0.08, 0.12, 0,16, and 0.2 x5} of an initial Gaussian test function for W = 10° m/s and D = 2 x 10° m?/s from the implicit finite difference method

with exponential approximation for different values of discretization intervals n, and n,: (-——), n, =100, , =100; (—-—- ), n, =500, n,= 300; (

)

n, =300, m, = 3000. (Vertical dotted lines correspond to the ideal position of the top of each wave for the different instants of the propagation.)
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vals #n, and n, {(see legend of Fig. 5a} are necessary to
reach the optimum solution in the case of the finite element
method: the product of the discrete interval numbers n, x n,
is lower by approximately a factor 40. In computing the
time point of view, this means that the finite element method
is faster by the same factor. Therefore, such a finite element
method opens new perspectives for investigation and
modeling of gas discharges, for example, for longer time
scales, larger electrode separations, etc.

3.2. Results in Real Discharges

The following results are given to show the ability of the
present work’s numerical scheme to correctly treat the cases
of real gas discharges dominated by space charge effects.

The first example chosen, already treated by Lowke and
Davies [3], concerns a class of electrical gas discharges
produced when a spatially uniform source (gamma rays
created by fission fragments) continually ionizes the gas
between two plane parallel metallic electrodes that is
assumed, for calculations, to be perfectly absorbing and not
emitting any particles. For certain values of gas pressure
and applied potential, space charge effects—particularly in
the sheath regions—become important in such discharges
which behave as usual glow discharges. As in Lowke and
Davies’ work [3] the filling gas is Ar under 240 Torr
pressure, 100 V applied voltage, and 3 mm gap length. For
this gas pressure, the atomic Ar™ ions initially produced by
the uniform jonization source S, (Sion = 3.6 x 106 cm —3/s)
are rapidly converted, via three body reactions, into Arj
molecular ions. As conversion time is shorter than drift and
diffusion times, it is quite correct to assume, following
Lowke and Davies’ explanation [3], that electrical
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FIG. 6. (a) Time evolution (=0, 2, 4, 6, 8, and 10 us) of electron (
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behavior of the discharge is mainly governed by clectrons
and Ar, ions. This means that the space charge effect can
be obtained from solution of the hydrodynamic equations of
the electrons and the molecular Ar; ions produced either
from Ar* generated by the uniform ionization source S;,,
or from Ar* created by the impact on Ar atoms of electrons
that are accelerated by the electric field. Furthermore, Ar;
ions can vanish by electron—Ar; recombination processes
with the coefficient a . (.. =881 x10~7cm?/s). There-
fore, the whole source term S(z, r) of the hydrodynamic
equations (4) for electrons and the Ar; ions to be solved
can be written as

S(z, 1) = Sion + He(2, 1) Vign — X2, 1Y npcp (2, 1) (14)

It is to be noted that the transport coefficients for elec-
trons and the Ar;" ions (i.e., electron and ion drift velocity
and longitudinal diffusion coefficients and also ionization
frequency vi.,) necessary for the solution of Egs. (4) with
source term (14) are taken from the literature [17].

Figure 6a shows transient and, also, steady state space
variation of the electron and Ar; ion densities calculated
from the finite element method solution of Egs. (4) under
the discharge conditions previously described, while Fig. 6b
shows the variation of the calcuiated electric field and
potential. Starting from the initial conditions (uniform elec-
tric field without space charge), the steady state resuits are
reached under the influence of the permanent source
uniform §,,, which sustains the discharge. These results
show two distinct regions which behave as the classical
cathodic sheath and negative glow of the usual glow
discharge [18]. The well-pronounced cathodic sheath, in
which the electric field rapidly decreases and the electron
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) and Ary ton {(——) density in Ar discharge between two plane parallel

electrodes for ¥ =100V, T,,, =300 K, p ., =240 Torr, and permanent Source S;,, = 3.6 x 10!° pair electron—ion em ~%s (ie., under Lowke and Davies

[3] conditions). (b) Initial (——-} and steady state (

) electric field and potential in Ar discharge with ¥ =100 V, T_,. =300 K, p, = 240 Torr, and

permanent source S, = 3.6 x 10® pair electron—ion ¢m —3/s (i.e., under Lowke and Davies [ 3] conditions).
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density becomes quasi-negligible in comparison to the ion
density, is due to the strong space charge effects existing in
this region since the electron drift velocity is much higher
than the ion drift velocity, The plasma region (or the
negative glow region) is characterized by the electron and
ion densities remaining constant and quasi-equal, leading to
a practically negligible net charge so that the resulting elec-
tric field is negligible and the potential is constant. It is to be
noted that the present results are in quite good agreement
with Lowke and Davies’s calculations [3].

The second example of the chosen real discharges con-
cerns the propagation of ionizing waves in N, discharge
between two plane paraliel electrodes under overvoltage
stress. The discharge conditions are not far from those of
Dhali and Williams {71, ie., 760 Torr gas pressure for
300 K background gas temperature, 5 mm gap separation,
and 24 KV applied voltage (i.e., about 50 % overvoltage).
The discharge is initiated at the cathode by an initial neutral
half Gaussian with peak height 10" ¢m ~? and 1 mm radius.
A uniform neutral background ionization density {ome
pair of electron—ion/ecm®) is also assumed. In fact, this
uniform ionization background ensures the propagation of
ionizing waves from cathode to anode without including
photoionization processes in gas as in, for example, Yoshida
and Tagashira’s work [2]. It is to be noted that the aim
of this paper is not to discuss the weli-known question
concerning the phenomena at the origin of the streamer
propagation (gas photoionization or energetic electrons in
the head streamer, or both, phenomena), but only to show
the ability of the present numerical method to correctly
treat the ionizing wave propagation problem under sirong
space charge effect. For this reason, the simplest case (i.e., a
uniform ionization background) is chosen in the following
calculations. Furthermore, the radial spread of the
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FIG. 7. (a) Time evolution {1=0,032,06,09,12, 15,18, and 2.1 ns) of electron {
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discharge cannot be assumed infinite as in the first
example (glow discharge conditions). So, the Poisson
equation needs to be solved either in 2D geometry (e.g., in
Dhali and Williams or Kunhardt and Wu [7]) or in 1D
geometry by using the image charge method proposed by
Davies et al [1]. The latter method (which is more
appropriate to 1D Cartesian geometry) is used in this paper,
assuming that the discharge is established uniformly in the
radial direction inside a column with a constant radius
{R,=200 um).

Figures 7a and b show space variation respectively of
charged particle densities and electric field in N, discharge
for different instants of evolution, under the discharge
conditions previously described. The transport coefficients
necessary for numerical solution of Eqgs. {4) for electron and
nitrogen ions are already given eisewhere [197. In Figs. 7
most of the classical behaviors of anode directed ionizing
waves are observed. Indeed, as time evolves from 0 to 2.1 ns,
electron and ion densities move towards the anode since
electrons of the initial density propagate towards the anode
{ions are quasi-static in the present time scale, 0 to 2.1 ns)
and simultaneously ionize the background gas, leading to
positive ion formation. Therefore, the resuiting net charge
becomes progressively large, leading to a space charge effect
which locally enhances the electric field {see Fig. 7b). Then,
this high space charge ¢lectric field, showing a sharp
gradient and justifying the name of “ionizing wave,”
accelerates seed electrons of uniform ionization back-
ground, thus producing new ionization in gases. This
phenomenon, involving new strong space charge and a new
corresponding sharp electric field, is repeated up to the
anode. It is also noted that the results shown in Figs. 7 are
in qualitatively good agreement with those of Dhali and
Williams [7].
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yand ion {(———) density in N, discharge between two plane

parallel electrodes for V=24 kV, T, = 300 K, and py, = 760 Torr. (b) Initial { --- ) and time evolution (¢ =0.3,06,09,1.2, 1.5, 1.8, and 2.1 ns) of electric
field in N, discharge between two plane parallel electrodes for V=24 kV, T, =300 K, and p,, = 760 Torr.
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4. CONCLUSION

In this paper, a specific finite element method is used, for
the first time in the literature, for the solution of
hydrodynamic conservation equations of charge carriers in
the gas discharge area. The aim is simply to propose, for the
reader, an additional method that presents different advan-
tages from those of the usual finite difference methods,
particularly in the case where there is discontinuity in the
density variation. This numerical scheme is first checked,
in the case of model discharges for the propagation of
rectangular density, showing its ability to properly treat the
difficult discontinuity problem. Then, by coupling Poisson
equation to conservation equations of charge carriers, this
numerical scheme is also successfully tested in the case of
two real discharges characterized by dominant space charge
effects: the cathodic region of an Ar glow discharge and
propagation of ionizing waves in N, discharge under
overvoltage and high pressure conditions. The next
step is to extend this numerical method to the case of
multidimensional geometry.

APPENDIX
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The system of four linear equations with four unknowns
ny, g, He, and n,, obtained in each finite element
[ziy z; 011 % Ui, £y 1] for the different values of / and m
({=0or 1 and m=0 or 1), is given hereafter in the case of
lighted sides 4B and DC (shown in Fig. 2), ie., in the case
of particles moving forwards along the z axis (negative
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In the case of lighted sides CD and BC (shown in Fig. 2},
i.e., in the case of particles moving backwards along the z
axis (positive particles), Eq. (A1) becomes
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It is to be noted that in Eq. (A1), densities n,, #g,, A,
iz, i, e ) and a(z;_\, £, ;) and in Eq. (A2), densities
Meoy Apoy Rep A(Z, 0, 1o ) and niz, 5, ¢, () appearing in 13
the right-hand terms are already known, either from initial
conditions and boundaries or from previous calculations ©
undertaken in the surrounding grids.

Noting also that the drift velocity W.(z, 7) is an algebraic |,
quantity;, this means that W _.(z, r) is considered positive
along the = axis (forwards direction) and negative for back-
wards direction.
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